

Level 5 Diploma in Foundations of Data Science Statistical Methods using Excel (951) 177 Credits

Unit: Introduction to Probability	Guided Learning Hours: 300		
Fyam Paper No • 2	Number of Creditor 20		
Prerequisites: Business terms and Excel knowledge	Corequisites: A pass or higher in Diploma in Analytics		
Terequisites. Dusiness terms and Excer knowledge.	or equivalence.		
Aim: One of the primary objectives in analytics is to me	easure the uncertainty associated with an event or key		
performance indicator. Analytics applications involve	tasks such as predicting the probability of occurrence of		
an event, testing a hypothesis, and building models to ex-	xplain variation in a variable of importance (outcome		
variable) to the business – such as customer satisfaction	, demand for product/service, market share, profitability,		
return on investment (ROI) etc.	B		
The aim of the course is to ensure learners understand in	nplementation of probability in real-world events. The		
topics covered include:			
• Events and sample space			
• Independent and dependent events			
Mutually exclusive events	NY STATES		
Data measurement scales			
Random and continuous variables			
Required Materials: Recommended Learning	Supplementary Materials: Lecture notes and tutor		
Resources.	extra reading recommendations.		
Special Requirements: The unit requires a combination	n of lectures, demonstrations, discussions, and hands-on		
labs.			
Intended Learning Outcomes:	Assessment Criteria:		
1. Understand the implementation of	1.1 Define probability theory.		
probability function and its use in measuring	1.2 Describe association between event and sample		
uncertainty associated with events or key performance	space.		
indicators.	1.3 Demonstrate creating a probability tree		
	diagram.		
	1.4 Be able to calculate complementary events.		
	1.5 Describe conditional probability.		
	1.6 Describe independent and dependent events.		
01	1./ Explore implementation of probability of		
	inutual events.		
2. Understand data classification at macro-level	2.1 Describe data classification categories.		
and different grouping and measurement scales.	2.2 Define structured and unstructured data.		
	2.3 Describe data measurement scale levels.		
C V	2.4 Demonstrate implementation of scales of		
	measurements in building analytics model.		
	2.5 Describe random vs fixed effect model.		
3. Understand the importance of random	3.1 Describe discrete variables.		
variables in probability and the use of discrete,	3.2 Describe continuous variables.		
continuous and mixed random variables.	3.3 Be able to calculate discrete random variables.		
	3.4 Describe Probability Mass Function (PMF).		
	3.5 Describe Probability Density Function (PDF).		
	3.6 Describe Cumulative Distribution Function		
	(CDF).		
A Understand for descended and the '1'	11 Describe on engening of		
4. Understand fundamental probability	4.1 Describe an experiment.		
models and Artificial Intelligence (AI)	4.2 De able to express rrobability frequency		
mouers and Artificial Intemgence (AI).	Distribution unough a graph.		

	4.3	Describe characteristics of probability and	
		events.	
	4.4	Explore permutations, combinations and variations as integral parts of combinatorics.	
	4.5	Be able to use combinations and permutation	
		formulas.	
Methods of Evaluation: A 2 ¹ / ₂ hour essay written paper with 5 questions, each carrying 20 marks. Candidates			
are required to answer all questions. Candidates also undertake project/coursework in Introduction to			
Probability with a weighting of 100%.			

Recommended Learning Resources: Introduction to Probability

Text Books	 Introduction to Probability, Statistics and Random Processes by Hossein Pishro- Nik. ISBN-13 : 978-0990637202 Introduction to Probability and Statistics by Seymour Lipschutz. ISBN-13 : 978- 0071762496 Statistics for Data Scientists: An Introduction to Probability, Statistics, and Data Analysis by Maurits Kaptein & Edwin van den Heuvel. ISBN-13 : 978- 3030105303 	
Study Manuals	BCE produced study packs	
CD ROM	Power-point slides	
Software	Excel	
Business & Computing		