Level 5 Diploma in Foundations of Data Science Statistical Methods using Excel (951) 177 Credits

Unit: Introduction to Probability	Guided Learning Hours: 300			
Exam Paper No.: 2	Number of Credits: 30	$	$	Corequisites: A pass or higher in Diploma in Analytics
:---				
or equivalence.				

Aim: One of the primary objectives in analytics is to measure the uncertainty associated with an event or key performance indicator. Analytics applications involve tasks such as predicting the probability of occurrence of an event, testing a hypothesis, and building models to explain variation in a variable of importance (outcome variable) to the business - such as customer satisfaction, demand for product/service, market share, profitability, return on investment (ROI) etc

The aim of the course is to ensure learners understand implementation of probability in real-world events. The topics covered include:

- Events and sample space
- Independent and dependent events
- Mutually exclusive events
- Data measurement scales
- Random and continuous variables

Required Materials: Recommended Learning Resources. extra reading recommendations.
Special Requirements: The unit requires a combination of lectures, demonstrations, discussions, and hands-on labs

Intended Learning Outcomes:

1. Understand the implementation of probability function and its use in measuring uncertainty associated with events or key performance indicators.

2. Understand data classification at macro-level and different grouping and measurement scales.
3. Understand the importance of random variables in probability and the use of discrete, continuous and mixed random variables.
4. Understand fundamental probability
concepts in the building of Machine Learning (ML) models and Artificial Intelligence (AI).

Assessment Criteria:

1.1 Define probability theory.
1.2 Describe association between event and sample space.
1.3 Demonstrate creating a probability tree diagram.
1.4 Be able to calculate complementary events.
1.5 Describe conditional probability.
1.6 Describe independent and dependent events.
1.7 Explore implementation of probability of mutual events
2.1 Describe data classification categories.
2.2 Define structured and unstructured data.
2.3 Describe data measurement scale levels.
2.4 Demonstrate implementation of scales of measurements in building analytics model.
2.5 Describe random vs fixed effect model.
3.1 Describe discrete variables
3.2 Describe continuous variables.
3.3 Be able to calculate discrete random variables.
3.4 Describe Probability Mass Function (PMF).
3.5 Describe Probability Density Function (PDF).
3.6 Describe Cumulative Distribution Function (CDF).
4.1 Describe an experiment.
4.2 Be able to express Probability Frequency Distribution through a graph.

	4.3	Describe characteristics of probability and events.
Explore permutations, combinations and variations as integral parts of combinatorics. Be able to use combinations and permutation formulas.		
Methods of Evaluation: A 2 $1 ⁄ 2$ hour essay written paper with 5 questions, each carrying 20 marks. Candidates are required to answer all questions. Candidates also undertake project/coursework in Introduction to Probability with a weighting of 100%.		

Recommended Learning Resources: Introduction to Probability

Text Books	- Introduction to Probability, Statistics and Random Processes by Hossein PishroNik. ISBN-13 : 978-0990637202 - Introduction to Probability and Statistics by Seymour Lipschutz. ISBN-13: 9780071762496 - Statistics for Data Scientists: An Introduction to Probability, Statistics, and Data Analysis by Maurits Kaptein \& Edwin van den Heuvel. ISBN-13 : 9783030105303
Study Manuals \square	BCE produced study packs
	Power-point slides
	Excel

